Official Machine Learning Blog of Amazon Web Services
-
In this post, we explore how Amazon Bedrock AgentCore Runtime simplifies the deployment and management of AI agents.
-
This post presents how AWS and PwC are developing new reasoning checks that combine deep industry expertise with Automated Reasoning checks in Amazon Bedrock Guardrails to support innovation.
-
In this post, Amazon shares how they developed a multi-node inference solution for Rufus, their generative AI shopping assistant, using Amazon Trainium chips and vLLM to serve large language models at scale. The solution combines a leader/follower orchestration model, hybrid parallelism strategies, and a multi-node inference unit abstraction layer built on Amazon ECS to deploy models across...
-
This post describes an approach of combining three powerful technologies to illustrate an architecture that you can adapt and build upon for your specific financial analysis needs: LangGraph for workflow orchestration, Strands Agents for structured reasoning, and Model Context Protocol (MCP) for tool integration.
-
In this post, we explore Amazon Bedrock AgentCore Memory, a fully managed service that enables AI agents to maintain both immediate and long-term knowledge, transforming one-off conversations into continuous, evolving relationships between users and AI agents. The service eliminates complex memory infrastructure management while providing full control over what AI agents remember, offering...
-
In this post, we explore an innovative solution that uses Amazon Bedrock Agents, powered by Amazon Nova Lite, to create a conversational interface for Athena queries. We use AWS Cost and Usage Reports (AWS CUR) as an example, but this solution can be adapted for other databases you query using Athena. This approach democratizes data access while preserving the powerful analytical capabilities of...
-
In this post, we review the technical specifications of P6e-GB200 UltraServers, discuss their performance benefits, and highlight key use cases. We then walk though how to purchase UltraServer capacity through flexible training plans and get started using UltraServers with SageMaker HyperPod.
-
This post explores how Indegene’s Social Intelligence Solution uses advanced AI to help life sciences companies extract valuable insights from digital healthcare conversations. Built on AWS technology, the solution addresses the growing preference of HCPs for digital channels while overcoming the challenges of analyzing complex medical discussions on a scale.
-
In this post, Lexbe, a legal document review software company, demonstrates how they integrated Amazon Bedrock and other AWS services to transform their document review process, enabling legal professionals to instantly query and extract insights from vast volumes of case documents using generative AI. Through collaboration with AWS, Lexbe achieved significant improvements in recall rates,...
-
In this post, we focus on implementing this architecture with step-by-step guidance and reference code. We provide a detailed technical walkthrough that addresses the needs of two critical personas in the AI development lifecycle: the administrator who establishes governance and infrastructure through automated templates, and the data scientist who uses SageMaker Unified Studio for model...